

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics/Further Mathematics

Statistics S2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 2017 • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75

2. The Edexcel Mathematics mark schemes use the following types of marks:

• **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.

• **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.

- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only

• cso - correct solution only. There must be no errors in this part of the question to obtain this mark

- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _____ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

6. If a candidate makes more than one attempt at any question:

• If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

• If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks	
	Allow any letter instead of <i>X</i> or <i>c</i> for this question			
1 (a)	$X \sim B(25, 0.2)$	M1 Writing or using B(25,0.2)or B(25,1/5) [allow Po(5)] May be written in full or implied by a correct CR (allow written as a probability statement)	M1	
	$[P(X \ge 9) =] 0.0468$ $[P(X \le 1) =] 0.0274$	1 st A1 both awrt 0.0468 and awrt 0.0274 seen.	A1	
	$\overline{X} = \begin{bmatrix} 0 \le \end{bmatrix} X \le 1$	2nd A1 $X \le 1$ or $X < 2$ or $0 \le X \le 1$ or [0,1] or 0,1 or equivalent statements. $X \le c$ and $c = 1$	A1	
	$9 \le X [\le 25]$	3rd A1d dependent on seeing a probability from the B(25, 0.2) and $X \ge 9$ or $X > 8$ or $9 \le X \le 25$ or 9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24,25 or [9,25] or equivalent statements. $X \ge c$ and $c = 9$	A1d	
	NB These two final 2 A marks must be for statements with "X" only(or list) – not in probability state SC If a probability from the B(25, 0.2) is seen and they either have both CR correct but writt probability statements or the CR is written as $1 > X > 9$ they get A1 A0 for final 2 marks			
(b)	H ₀ : $p = 0.2$	B1 both hypotheses with <i>p</i> or π and clear		
	$H_1: p < 0.2$	which is H_0 and which is H_1	B1	
	$P(X \le 6) = 0.1034 \text{ or } CR X \le 5$	1 st M1 writing or using B(50, 0.2) and writing or using P($X \le 6$) or P($X \ge 7$) on its own. May be implied by a correct CR	M1	
		1 st A1 awrt 0.103. Allow CR $X \le 5$ or $X < 6$. or if not using CR allow awrt 0.897.	A1	
	Insufficient evidence to reject H ₀ , Accept H ₀ , Not significant. 6 does not lie in the Critical region.	2nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non-contextual statements). ft their Prob/CR compared with 0.05/6/(0.95 if using 0.8979). Do not follow through their hypotheses	M1d	
	No evidence that increasing the batch size has reduced the percentage of broken pots (oe) or evidence that there is no change in the percentage of broken pots (oe)	2 nd A1cso Conclusion must contain the words reduced/ no change/not affect oe number/percentage/proportion/ probability oe, and pots. All previous marks must be awarded for this mark to be awarded. Do not allow the potters claim /belief is wrong/true NB Correct contextual statement on its own scores M1A1	A1cso	
			(5) (Total 9)	

2(a)(i)	<i>X</i> ~Po(2.5)		
	$P(X \ge 4) = 1 - P(X \le 3)$	M1 writing or using $1 - P(X \le 3)$ implied	M1
	= 1 - 0.7576	by awrt 0.242	
	= 0.2424	A1 awrt 0.242	A1
(ii)	<i>X</i> ~Po(0.625)	B1 Using Po(0.625)	B1
	$e^{-0.625}0.625^3$	M1 finding $P(X = 3)$ with any λ e.g	M1
	P(X = 3) =	$e^{-\lambda}\lambda^3$	
	5.	$\frac{1}{3!}$ or $P(X \le 3) - P(X \le 2)$ – may be	
		implied by awrt 0.0218	
	= 0.02177	A1 awrt 0.0218	A1 (5)
(b)	1 - P(X = 0) < 0.2	1 st M1 for writing or using	M1
	P(X = 0) > 0.8	1 - $P(X = 0) < 0.2$ or $P(X = 0) > 0.8$ oe	
		allow use of = instead of $>$ or $<$. May be	
		implied by $e^{-l} = 0.8 \text{ or } e^{-l} > 0.8 \text{ or by}$	
		awrt 5.36 or 0.089	
	$e^{-2.5t} > 0.8$	2 nd M1 writing an inequality of the form	M1
		$e^{-l} > 0.8$ using any <i>l</i> . May be implied by	
		or by awrt 5.36 or 0.089 Do not allow	
	t < 0.089 hours = 5.36 mins	$e^{-l} = 0.8$	
	[<i>t</i> <] 5 mins	A1cso both the method marks must be	A1cso
		awarded. Accept 5 or $t = 5$ or $t < 5$	(3)
(c)	H ₀ : $\lambda = 2.5 (\lambda = 5)$	B1 both hypotheses using λ or μ - allow	B1
	H ₁ : $\lambda > 2.5 (\lambda > 5)$	5 or 2.5 and it must be clear which is H_0	
	$\mathbf{P}(\mathbf{v} \ge 10) = 1 \mathbf{P}(\mathbf{v} \ge 10)$	and which is H_1	2.64
	$P(X \ge 10) = 1 - P(X \le 9)$	1 st MI writing or using $PO(5)$ and 1 $P(K < 0)$ May be implied by a correct	MI
	1 0.0682	$I - P(X \le 9)$ May be implied by a correct	
	= 1 - 0.9682	CR. Do not allow for writing $P(X \ge 10)$	
	= 0.0318	1st A1 awrt 0.0318. Allow CR $X \ge 10$ or	Al
		X > 9	
		for $P(Y < 9) - awrt 0.968$	
	Sufficient avidence to reject He Accent	2^{nd} M1 dependent on previous M being	M1d
	H ₁ significant 10 does lie in the Critical	awarded A correct statement (do not	WIIU
	region.	allow if there are contradicting non-	
		contextual statements). ft their Prob/CR	
		compared with 0.05/10 (0.95 if using	
		0.968)	
	There is sufficient evidence that the mean	2 nd A1 A correct contextual statement	A1cso
	rate of telephone calls has increased (oe)	must include the word calls and the idea	
		the rate has increased. (do not allow "it	
		has changed on its own oe). All previous	
		awarded	
		M1A1 is awarded for a correct contextual	
		statement on its own provided previous	
		marks have been awarded	(5)
			(Total 13)

3(a)	1 .	1st M1 Using $\int xf(x) dx$, multiplying out	
	$E(X) = \frac{1}{9} \int_{1}^{4} (4x^{2} - x^{3}) dx$	and at least one of $x^2 \rightarrow x^3$ or $x^3 \rightarrow x^4$ ignore limits	M1
	$= \frac{1}{9} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_1^4$	1 st A1 correct integration, ignore limits	A1
	$= \frac{1}{9} \left[\frac{4 \times 4^3}{3} - \frac{4^4}{4} \right] - \frac{1}{9} \left[\frac{4}{3} - \frac{1}{4} \right]$	2 nd M1d subst in correct limits (allow 1 sign error)	M1d
	$=\frac{9}{4}$ or 2.25	2 nd A1 cao allow equivalent fractions	A1
			(4)
(b)	1 -4	M1 for using $\frac{1}{9}\int_{2.5}^{4} x(4-x) dx$ or $1-\frac{1}{9}\int_{1}^{2.5} x(4-x) dx$ correct limits needed	
	$P(X > 2.5) = \frac{1}{9} \int_{2.5}^{4} x (4-x) dx$	at some point Or 1- $\frac{a^2}{69}x^2$ - $\frac{1}{27}x^3$ - $\frac{5}{27\dot{a}}$ and attempt to	M1
		subst 2.5	
	$=\frac{1}{9} \left[2x^2 - \frac{x^3}{3} \right]_{2.5}^{4}$	1 st A1 correct integration with correct limits at some point	A1
	$=\frac{3}{8}$ oe or 0.375	2 nd A1 allow equivalent fractions	A1
			(3)
(c)	P(both batteries working after 25 hours) = $(0.375)^2$	M1 (their part(b)) ² or writing $(P(X > 2.5))^2$	M1
	$= 0.140625 \text{ or } \frac{9}{64}$	A1 awrt 0.141	A1
			(2)
(d)	$P(X > 1.6) = \frac{1}{9} \int_{1.6}^{4} x (4 - x) dx$ $= \frac{96}{125} \text{ or } 0.768$	B1 0.768 or awrt 0.77 or 0.5898or awrt 0.59. These may be seen in the conditional probability or implied by a correct final answer	B1
	P(works for 25 hours worked for 16 hours) = $\frac{0.140625}{(0.768)^2}$	M1 $\frac{\text{their part}(c)}{prob}$ or $\frac{(\text{their}(b))^2}{prob}$ and numerator < denominator	M1
	= 0.2384	A1 awrt 0.238	A1
	NB if use one battery rather than 2 they cou	ld get B1 M0 A0	
			(3)
			(Total 12)

4.(a)	$\left[E(X) = \frac{\alpha + \beta}{2} = 3.5 \right], \Rightarrow \alpha + \beta = 7$	B1 Correct equation. Need not be simplified	B1
	$\begin{bmatrix} P(X > 5) = \frac{\beta - 5}{\beta - \alpha} = \frac{2}{5} \end{bmatrix},$ $\Rightarrow 5(\beta - 5) = 2(\beta - \alpha)$	M1 a second correct equation, Using simultaneous equations and eliminating α or β to gain a value of α and β .	M1
	$\alpha = -4$	1 st A1 for -4	A1
	$\beta = 11$	2nd A1 for 11	A1
		NB Award full marks for $\alpha = -4$, $\beta = 11$	
			(4)
(b)(i)	$\frac{c+4}{15} = \frac{2}{3}$		
	[<i>c</i> =] 6	B1 for 6	B1
(ii)		M1 $\frac{1}{\beta - \alpha} \times (9 - c)$ or	
	$P(6 < X < 9) = \frac{1}{15} \times (3)$	$[F(9) - F(c)] = \frac{13}{15} - \frac{2}{3}$	M1
		SC if 9 > "their b" award for 1- $\frac{2}{3}$	
	= 0.2	A1cso 0.2 oe	A1cso
			(3)
(c)	$[P(S < 45)] = \frac{3}{10}$	B1 $\frac{3}{10}$ seen – it does not need to be	B1
		associated with P ($S < 45$)]	
	$[P(S > 55)] = \frac{1}{2}$	B1 $\frac{1}{2}$ seen– it does not need to be	B1
		associated with P ($S > 55$)]	
		M1 for adding their two areas and the total < 1. Do not allow 2′ a single area	M1A1
	$total = \frac{3}{10} + \frac{1}{2} = \frac{4}{5}$	A1 $\frac{4}{5}$ oe	
		NB Award full marks for $\frac{4}{5}$	
			(4)
			(Total 11)

5(a)	$P(M < 10) = P\left(Z < \frac{12 - 14}{\sigma}\right) = 0.1$		
	$\Rightarrow \frac{12-14}{\sigma} =, -1.2816$	M1 standardising (<u>+</u>) with 12, 14 and σ and setting equal to a <i>z</i> value where $ z > 1$	M1
		B1 ± 1.2816 or better	B1
	$\sigma = 1.5605$ = awrt 1.56 minutes	A1 awrt 1.56 Do not allow answer written as an exact fraction.	A1 (3)
(b)	<i>T</i> represents number less than 12 minutes. $T \sim B(15, 0.1)$	B1 Writing or using B(15, 0.1).	B1
	$P(T \le 1)$	M1 writing $P(T \le 1)$ or $P(T < 2)$ any letter may be used.	M1
	= 0.549	A1 awrt 0.549	A1
		NB 0.549 gets B1 M1 A1	(3)
(c)	[$T \sim$ number of people who take less than 12 mins to complete the test] $T \sim B(n, 0.1)$		
	T can be approximated by N($0.1n, 0.09n$)	B1 mean = $0.1n$ and Var = $0.09n$ oe may be seen in an attempt at standardisation	B1
	$P\left(Z < \frac{8.5 - 0.1n}{\sqrt{0.09n}}\right) = 0.3085$	M1 using a continuity correction either 8.5 or 7.5 in an attempt at standardised form. Allow 0.09 for sd.	M1
		B1 a z value of awrt ± 0.5	B1
	$\frac{8.5 - 0.1n}{\sqrt{0.09n}} = -0.5 \text{ or } \frac{8.5 - 0.1x^2}{0.3x} = -0.5$	M1 standardising using their mean and sd. (If these have not been given then they must be correct here) and one of 7.5, 8, 8.5, 9 or 9.5 and equal to a <i>z</i> value where z > 0.4. Allow any form	M1
		A1 A correct equation in any form. ISW. Do not allow if they have $0.3n$ rather than $0.3\sqrt{n}$	A1
	$0.1n - 0.15\sqrt{n} - 8.5 = 0$ $\sqrt{n} = 10$	M1 using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term quadratic . If they write the quadratic formula down then allow one slip. If no formula written down then it must be correct for their equation. May be implied by seeing 10 or 8.5. They must show working if the equation used is not correct. 2^{nd} A1 awrt 10.0 – do not need to see <i>n</i> or	M1A1
		\sqrt{n} . Allow $n = 10$ May be implied by 100 3rd A1 cso 100 If they have a second	
	n = 100	answer of 72.25 they must reject it to get this final mark.	A1cso (8)
			(Total 14)

6(a)	$k - \begin{array}{c} x - x \\ x - x \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	B1 correct shape with the end points on the <i>x</i> -axis B1 correct shape with <i>k</i> , 2,3,5,6 marked on in the correct places. Allow $1/3$ for <i>k</i>	B1 B1
			(2)
(b)	$\frac{1}{2} \times k + 2 \times k + \frac{1}{2} \times k = 1$	M1 An attempt to find area using any correct method and putting equal to 1	M1
	$5k = 1$ $k = \frac{1}{3}*$	A1 cso. AG Method must be shown and there must be no incorrect working. Need to have these 3 lines as a minimum.	A1 cso
	alternative		(2)
	$\int_{2}^{3} k(x-2) dx + \int_{3}^{5} k dx + \int_{5}^{6} k(6-x) dx = 1$ $\left[\frac{kx^{2}}{2} - 2kx\right]_{2}^{3} + \left[kx\right]_{3}^{5} + k\left[6x - \frac{x^{2}}{2}\right]_{5}^{6} = 1$	M1 Correct integration to find the whole area, put = 1 and an attempt to integrate, ignore limits for attempt $x^n \rightarrow x^{n+1}$	M1
	$\overset{\text{a}}{\underset{\text{b}}{\text{c}}} \frac{3}{2}k + 2k\frac{\ddot{\underline{o}}}{\dot{\underline{o}}} + (5k - 3k) + \overset{\text{a}}{\underset{\text{b}}{\text{c}}} 18k - \frac{35}{2}k\frac{\ddot{\underline{o}}}{\dot{\underline{o}}} = 1$		
	3k = 1		
	$k = \frac{1}{3}$	A1 cso Method must be shown – at least one step between integration and $k = 1/3$ and there must be no incorrect working.	A1 cso
	SC For using verification they could get M	A0 if there are no errors	
(c)		Alternative	
	$\begin{bmatrix} 0 & x < 2 \\ x^2 & 2x + 2 \\ & 2 \le x \le 2 \end{bmatrix}$	$\begin{bmatrix} 0 & x < 2 \\ \frac{1}{2}(x-2)^2 & 2 < x < 3 \end{bmatrix}$	M1A1
	$\begin{bmatrix} -\frac{-}{6} & +\frac{+}{3} \\ 6 & 3 & +\frac{+}{3} \end{bmatrix} \qquad 2 \le x \le 3$	$\begin{bmatrix} 6^{(X-2)} & 2 \le X \le 5 \end{bmatrix}$	M1A1
	$F(x) = \begin{cases} \frac{x}{3} - \frac{5}{6} & 3 < x < 5 \end{cases}$	$F(x) = \begin{cases} \frac{x}{3} - \frac{5}{6} & 3 < x < 5 \end{cases}$	M1A1
	$2x - \frac{x^2}{6} - 5 \qquad 5 \le x \le 6$	$\left 1 - \frac{1}{6} \left(6 - x \right)^2 \right \qquad 5 \le x \le 6$	B1
	$1 \qquad x > 6$	$1 \qquad x > 6$	
			(7)

1 st M1 For 2	$2 \le x \le 3$, $\int_{2}^{x} \frac{1}{3} (t-2) dt = \left[\frac{t^2}{6} - \frac{2t}{3} \right]_{2}^{x}$ and att	empt to subst 2 and x		
Or F	Or $F(x) = \frac{x^2}{6} - \frac{2x}{3} + C$ and using $F(2) = 0$			
1 st A1 for th	e second row in the above $F(x)$ oe. Condone	$<$ instead of \leq and vice versa		
2 nd M1 For	$3 < x < 5$, $\int_{3}^{x} \frac{1}{3} dt + \left\ \frac{1}{6} \right\ = \left[\frac{t}{3} \right]_{3}^{x} + \left\ \frac{1}{6} \right\ $ and attend	mpt to subst 3 and x. Allow F(3) instead of " $\frac{1}{6}$	_ ''	
or	$F(x) = \frac{x}{3} + C$ and using $F(3) = \frac{1}{6}$ or $F(5) = \frac{5}{6}$			
2 nd A1 for th	he third row in the above $F(x)$ oe. Condone \leq	instead of < and vice versa		
3 rd M1 For	$5 \le x \le 6, \int_5^x 2 - \frac{t}{3} dt + \frac{5}{6} = \left[2t - \frac{t^2}{6} \right]_5^x + \frac{5}{6}$	and subst 5 and x. Allow F(5) instead of " $\frac{5}{6}$ "		
or	$F(x) = 2x - \frac{x^2}{6} + C$ and using $F(6) = 1$			
3 rd A1 for t	he fourth row in the above $F(x)$ oe. Condone	< instead of and vice versa		
B1 For both	Top line of $F(x)$ ie 0 $x < 2$ and Bottom line circles d of $x < 2$ and $x < 2$ and $x < 2$	ne of $F(x)$ ie 1 $x > 6$		
Condonie	$\frac{2}{2}$ instead of $\frac{2}{2}$ and vice versa. Allow one of			
(d)	$2x - \frac{x^2}{6} - 5 = 0.9$	1 st M1 using their cdf for $5 \pounds x \pounds 6 = 0.9$	M1	
	x^2 2x + 5.0 - 0	2 nd M1 using either the quadratic formula	M1	
	$\frac{-2x+3.9}{6} = 0$	or completing the square or factorising or any correct method to solve their 3 term		
	$2\pm\sqrt{4-4\times\frac{1}{2}\times5.9}$	quadratic which must have been correctly		
	$x = \frac{\sqrt{70}}{1/2}$	rearranged. If they write the formula down		
	73	then allow a slip. If no formula written		
		down then it must be correct for their		
		6.77		
	x = awrt 5.23	A1 awrt 5 23 – (allow $\frac{30-\sqrt{15}}{15}$). If they	A1	
		have 6 77 this must be eliminated		
			(3)	
(e)	$\mathrm{E}(X) = 4$			
	$F(5.5) - F(4) = \frac{11}{3}$	M1 for writing or attempting to find F(5,5) = F(4) = F	M1	
	24	$F(5.5) - F(4)$ or $P(X \pm 5.5) - P(x \pm 4)$ or $P(X \pm 5.5) - P(x \pm 4)$ or		
		P(X < 5.5) - P(x < 4) or F(5.5) - 0.5 or		
		$\dot{\mathbf{O}}_4 k dx + \dot{\mathbf{O}}_5 k(6-x) dx$ with correct		
		limits and $x^n \rightarrow x^{n+1}$. May be implied by		
		a correct answer.		
		A1 $\frac{11}{24}$ oe or awrt 0.458	A1	
			(2)	
			(Total 16)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom